Electrochemical, Spectrophotometric and Potentiometric Studies of Some Derivatives of Hetero Cyclic Rings in Aqueous Media

By

Rasha Nezar Felaly

A thesis Submitted in Partial Fulfillment for the Requirements of the degree of

Doctor of Philosophy [Physical Chemistry]

Supervised By Prof. Dr. El-Sayed M.Mabrouk

Chemistry DEPARTMENT FACULTY OF SCINCE KING ABDULAZIZ UNIVERSITY JEDDAH – SAUDI ARABIA 1432 – 2011 دراسات كهروكميائية وطيفية وجهدية على بعض مشتقات الحلقات غير المتجانسة في الأوساط المائية

بحث مقدم لنيل درجة الدكتوراة في العلوم كيمياء/ كيمياء فيزيائية

الأستاذ الدكتور /السيد محمود مبروك

كلية العلوم جامعة الملك عبد العزيز جدة-المملكة العربية السعودية 1432-2011

TABLE OF CONTENTS

Examination Committee Approval

Acknowledgement	i
Abstract	ii
Arabic Abstract	iii
Table of Contents	iv
List of Figuers	vii
List of Tables	XV
List of Symbols and Terminology	xviii

Chapter I: Introduction

1.1 Literature survey on polarographic and cyclic voltammetric studies of azo	
compound	1
1.2 Literature survey on polarographic and cyclic voltammetric studies of	
azomethine compound	17
1.3 Literature survey on potentiometric and spectrophotometric studies of azo	
compound	23
1.4 Literature survey on potentiometric and spectrophotometric studies of	
azomethine compound	32
Aim of the work	39

Chapter II: Experimental

2.1 Solid comounds	40
2.1.1 Preparation of the solid azo compounds	40
2.1.2 Preparation of the solid azomethine compounds	42

2.2 Solutions	4
2.2.1 Azo compounds and Azomethine solutions	44
2.2.2 Sodium hydroxide solution	14
2.2.3. Hydrochloric acid solution	44
2.2.4. Potassium chloride solution	14
2.2.5. Universal buffer solutions	44
2.3. Instruments and Working Procedures	46
2.3.1. DC-Polarographic measurements	16
2.3.2. Cyclic voltammetric and Differential puls polarography measurements. 4	17
2.3.3. Controlled potential electrolysis (Coulometry)	17
2.3.4. Spectral studies. 4'	7
2.3.4.1 UV and Visible spectra	7
2.3.4.2 IR –Spectra 4	8
2.3.4.3 ¹ HNMR Spectra	8
2.3.5. Potentiometric measurements	9

Chapter III: Results and Discussion

3.1 Electrochemical studies	58
3.1.1 DC-polarographic measurements	58
3.1.1.1 Current- potential curves	58
3.1.1.2 Effect of pressure at mercury head	59
3.1.1.3. Analysis of polarographic waves	60
3.1.1.4. Half-wave potential – pH curves	61
3.1.2. Cyclic Voltammetry Measurments	104
3.1.3. Differential pulse polarographic measurements	106
3.1.4. Determination of the total number of electrons	152

3.1.5. Mechanism of the electrode reaction	. 156
3.1.6. Substituent's effect	161
3.2. Spectrophotometric Studies	165
3.2.1 Electronic absorption spectra of azo compounds derived from	
2-amino-3-hydroxypyridine and 4-hydroxyquinaldine	165
3.2.2. Electronic absorption spectra of azomethine compounds derived from	
2-amino-3-hydroxy pyridine and 4-amino quinaldine	165
3.2.3. Determination of the dissociation constant values	166
3.2.3.1 The limiting absorbance method	166
3.2.3.2 The modified limiting absorbance method	167
3.3 Potentiometric Studies	205
3.3.1 Determination of proton -ligand dissociation constant of the	
azo and azomethine compounds	206
REFERENCES	221
Arabic Summary	

المستخلص

تعتبر حلقتي البيردين والكينولين من المركبات الحلقية غير المتجانسة المهمة لما لها من نشاط بيولوجي ضد الفطريات والبكتريا والفيروسات المسببة للكثير من الأمراض وبالتالي استخداماتها في صناعة العقاقير والكيمياء الدوائية بالإضافة إلى استخداماتها في الكيميياء التحليلية في صورة كواشف وأيضاً تستخدم هذه المركبات في إزالة واستخلاص العديد من أيونات الفلزات ،كذلك استخدام هذه المركبات كمثبطات لتآكل الفلزات في الأوساط المائية بالإضافة إلى استخداماتها في مواد الليزر والصناعات البتروكيماوية. في هذة الدراسة تم تحضير بعض من (صبغات الآزو ، قواعد شيف) من مشتقات حلقتي البيريدين والكينولين التالية:

2-amino-3-hydroxy pyridine, 4- amino quinaldine, 4-hydroxy quinaldine

كما تم إثبات الصيغة البنائية للمركبات المحضرة بإجراء تحاليل الأشعة تحت الحمراء وتحاليل الرنين النووي المغناطيسي.

وقد تم استخدام القياسات البولاروجرافية والبولاروجرافي النبضي التفاضلي والفولتامترية الدائرية لمعرفة تأثير الوسط والشكل التركيبي على عملية اختزال هذه المركبات واقتراح ميكانيكية الاختزال لها ومقارنة نتائج السلوك الفولتامتري الدائري بنتائج القياسات البولاروجرافية، كما تم دراسة تأثير المستبدلات في حلقة الفينيل على عملية الاختزال. حيث أظهرت النتائج أن مركبات الأزو الأول والثاني والثالث والخامس تعطي موجة بولاروجرافية واحدة بينما مركب الآزو الرابع يعطي موجتين بولاروجرافيتين. كذلك بالنسبة لمركبات الأزوميثين الثالث والخامس أعطت موجة بولاروجرافية واحدة، أما مركبات الأزوميثين الرابع والثاني فأعطت موجتين بولاروجرافية والثاني الرابع

أيضاً تم تعيين ثوابت التفكك للمركبات المحضرة باستخدام طرق المعايرات الجهدية والدراسات الطيفية، حيث أثبتت النتائج التي تم الحصول عليها أن لبعض هذه المركبات ثابت تفكك واحد والبعض الأخر له ثابتي تفكك اعتماداً على الشكل التركيبي لها وأن هناك تطابقاً تاماً بين النتائج التي تم الحصول عليها من الدراسات الطيفية والدراسات الجهدية.

الملخص باللغة العربية

تتناول هذه الرسالة تحضير بعض مشتقات صبغات الآزو وقواعــد شيف من مركبين من المركبات الحلقية غير المتجانسة وهما حلقتي البيريدين والكينولين نظراً لأهميـة هذه المركبات وتطبيقاتها في كثيـر من المجـالات.

ولقد تم إثبات صغيتها البنائية وإجراء بعض الدراسات الكهروكيميائية عليها لمعرفة خواصها الكهربية وحساب ثوابت التفكك لها باستخدام الطرق الطيفية والجهدية وأيضاً دراسة متراكباتها الفلزية في المحلول مع بعض أيونات العناصر الأنتقالية.

وتتضمن الرسالة الموضوعات التالية:

الباب الأول ويتضمن عرضاً لبعض الأبحاث المنشورة والتي تتعلق بالدراسات البولاروجرافية والفولتامترية وكذلك الدراسات الطيفية والجهدية لمركبات الآزو والآزوميثين.

الباب الثاني ويتضمن وصفا لطرق تحضير المركبات قيد الدراسة وطرق تحضير المحاليل بالإضافة الى شرح الأجهزة المستخدمة في القياسات المختلفة، وكذلك اثبات الشكل التركيبي للمركبات باستخدام قياسات الأشعة تحت الحمراء وأشعة الرنين النووي المغناطيسي.

الباب الثالث ويشتمل على مايلى:

دراسة السلوك البولاروجرافي للمركبات المحضرة في أوساط مائية ذات أرقام هيدروجينية مختلفة تترواح بين 2-11 لمعرفة تأثير الوسط على عملية الاختزال لهذه المركبات على قطب الزئبق المتساقط. حيث اظهرت النتائج أن مركبات الأزو الأول والثاني والثالث والخامس تعطي موجة بولاروجرافية واحدة بينما مركب الآزو الرابع يعطي موجتين بولاروجرافيتين. كذلك بالنسبة لمركبات الآزوميثين الثالث والخامس أعطت موجة بولاروجرافية واحدة، أما مركبات الآزوميثين الأول والثاني فأعطت موجتين بولاروجرافيتين في الأوساط القاعدية. بينما مركب الآزوميثين الرابع فقد أظهر ثلاث موجات بولاروجرافية.

وقد وجد أن جهود نصف الموجة تزاح نحو قيم أكثر سالبية بزيادة الرقم الهيدروجيني للمحلول، كما تم حساب معامل الأنتقال لعملية الاختزال من قيم الميل لمنحنيات التحليل اللوغاريتمي للموجات البولاروجرافية حيث وجد أن عملية الاختزال تتم بطريقة غير انعكاسية. كذلك تم دراسة تأثير ارتفاع عمود الزئبق على تيار الاختزال ومنها وجد أن عملية الاختزال محكومة بظاهرة الانتشار مع مشاركة جزئية لظاهرة الامتزاز.وقد تم اقتراح ميكانيكية اختزال هذه المركبات على سطح قطب الزئبق.

وتم أيضاً دراسة السلوك الفولتامتري الدائري لهذه المركبات في أوساط مائية ذات أرقام هيدروجينية مختلفة على سطح قطب الزئبق المعلق وتتبع سلوك الاخترال لها لتحديد ميكانيكية التفاعل القطبي ومقارنة نتائج السلوك الفولتامتري الدائري بنتائج القياسات البولاروجرافية حيث أظهرت النتائج أن مركبات الآزو كلها تعطي موجة مهبطية واحدة باستثناء مركب الآزوالرابع فإنه يعطي موجتين مهبطية. اما بالنسبة لمركبات الآزوميثين الأول والثاني فإنها تعطي موجة مهبطية واحدة في الأوساط الحمضية وموجتين مهبطية في الأوساط المتعادلة والقلوية وأما المركب الرابع فله ثلاث موجات مهبطية عند جميع الأوساط المائية. بينما مركب الآزوميثين الثالث والخامس فلهما موجه مهبطية واحدة عند جميع الأوساط المتعادلة والقلوية وأما المركب الرابع فله ثلاث موجات مهبطية واحدة عند جميع الأوساط المتعادلة والقلوية وأما المركب الرابع فله مثلاث موجات مهبطية مواحدة عند جميع المائية. بينما مركب الآزوميثين الثالث والخامس فلهما موجه مهبطية واحدة عند جميع الأوساط المائية مما يثبت أن عملية الاخترال تتم بطريقة غير انعكاسية. وقد تم حساب قيم معامل الأنتقال للتفاعل القطبي عند أرقام هيدروجينية مختلفة حيث وجد أنها تتفق مع مثيلتها المحسوبة من القياسات البولاروجرافية.

كما تم دراسة تأثير المستبدلات في حلقة الفينيل (وهي إما مجموعات ساحبة للإلكترونات أو معطية للالكترونات) على عملية الاختزال أو الأكسدة في ضوء ثوابت هامت حيث وجد أن المجموعات الساحبة للإلكترونات تسهل عملية الاختزال بينما المجموعات المعطية فهي تؤدي الى عكس ذلك.

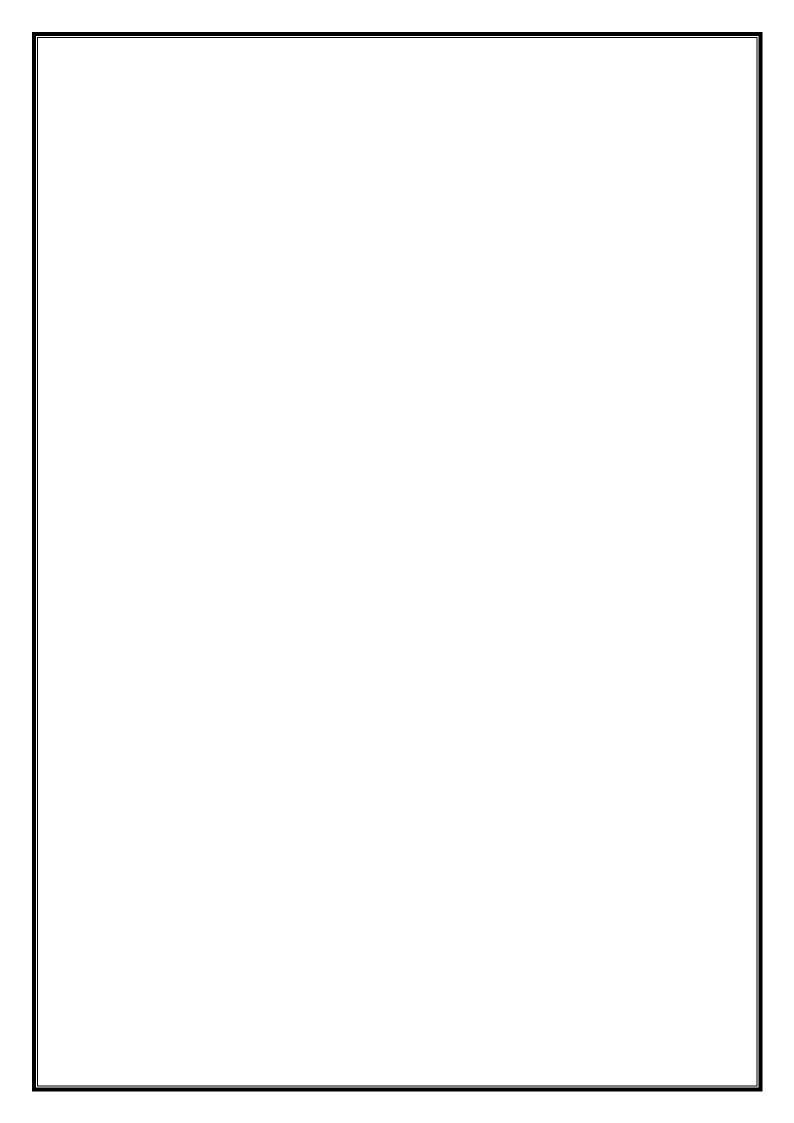
أيضاً تم دراسة السلوك البولاروجرافي النبضي التفاضلي لهذه المركبات في أوساط مائية ذات أرقام هيدروجينية مختلفة وتتبع سلوكها، حيث وجد أن هناك تطابق في النتائج بين السلوك البولاروجرافي و السلوك الفولتامتري الدائري لهذه المركبات.

في هذا الجزء من الرسالة تم دراسة أطياف المركبات المحضرة في منطقتي الأشعة فوق البنفسجية والأشعة المرئية في محاليل منظمة ذات أرقام هيدروجينية مختلفة وحساب ثوابت التفكك لهذه المركبات ومقارنتها بتلك التي تم الحصول عليها من القياسات الجهدية، حيث وجد تطابقاً تاماً بينهما.

وفي هذا الجزء تم تعين ثوابت التفكك للمركبات المحضرة باستخدام طرق المعايرات الجهدية، حيث وجد أن بعض المركبات لها ثابت تفكك واحد والبعض الأخر له ثابتي تفكك وقد تم تفسير النتائج التي تم الحصول عليها وتعريف ثوابت التفكك لهذه المركبات.

Abstract

Pyridine and quinoline heterocyclic rings and their derivatives are considered to be very important compounds due to their applications in several purposes such as the manufacture of membrances of sensitive electroles (sensors) and ion selectives electrodes and pharmaceutical compounds. Also, the azo dyes and Schiff base compounds derived from pyridine and quinoline rings are very useful due to their uses as analytical reagents, their biological activity in treatment of several diseases as well as their uses as inhibitors for metal corrosion and manufacture of some laser materials and petrochemicals.


The present study aims to preparation of some azo and azomethine compounds derived from 2-amino-3-hydroxypyridine, 4-aminoquinaldine and 4-hydroxyquinaldine. The structural formulae of these compounds were characterized using IR and (¹HNMR) spectra.

The electrochemical behavior of these compounds is investigated using deferent techniques (DC, CV and DPP) to define their redox potential ($E_{1/2} \& E_p$), suggestion the electrode reaction mechanism and studying the effect of substituent and medium on the electrode reaction. The polarograms of azo compounds (I), (II), (III) and (V) are consisted of a single reduction wave, while the polarogram of azo compound (IV) is consisted of a two reduction waves. For azomethine compounds (I) and (V) the polarograms shows a single reduction wave. For azomethine compounds (I) and (II) the polarograms are consisted of two cathodic waves in alkaline media, while for the azomethine compound (IV) three cathodic waves were observed.

The study is also extended to determine the dissociation constants value (pk_a) of these compounds using spectrophotometric measurments. The absorption spectra of azo and azomethine compounds investigated in buffer solutions of varying pH (2-11) were recorded within the range 200-700 nm. All the investigated compounds exhibited three bands. The first band is due to the local excitation of the π - π * transition within the aromatic moiety, while the second and third bands are attributed to the charge transfer (C.T) interaction within the whole molecule, and the C.T bands are sensitive to both medium and structure.

The study is also included the the potentiometric measurements of azo and azomethine compounds under investigation to determine the dissociation constants values (pk_a) of these compounds. The results indicated that all the investigation compounds (except azomethine compounds (IV) and (V)) showed two pk_a values, the first one is corresponds to the protonation of the N-atm in pyridine or quinoline rings, where as the second one is due to the ionization of the phenolic OH group in the pyridine or phenyl rings. The values of pk_a determined from the potentiometric measurements are in a good agreement with those obtained from spectrophotometric methods.

(لايوجد ملخص عربى-لاتوجد خاتمه)

